Anatomical Differences Determine Distribution of Adenovirus after Convection-Enhanced Delivery to the Rat Brain
نویسندگان
چکیده
BACKGROUND Convection-enhanced delivery (CED) of adenoviruses offers the potential of widespread virus distribution in the brain. In CED, the volume of distribution (Vd) should be related to the volume of infusion (Vi) and not to dose, but when using adenoviruses contrasting results have been reported. As the characteristics of the infused tissue can affect convective delivery, this study was performed to determine the effects of the gray and white matter on CED of adenoviruses and similar sized super paramagnetic iron oxide nanoparticles (SPIO). METHODOLOGY/PRINCIPAL FINDINGS We convected AdGFP, an adenovirus vector expressing Green Fluorescent Protein, a virus sized SPIO or trypan blue in the gray and white matter of the striatum and external capsule of Wistar rats and towards orthotopic infiltrative brain tumors. The resulting Vds were compared to Vi and transgene expression to SPIO distribution. Results show that in the striatum Vd is not determined by the Vi but by the infused virus dose, suggesting diffusion, active transport or receptor saturation rather than convection. Distribution of virus and SPIO in the white matter is partly volume dependent, which is probably caused by preferential fluid pathways from the external capsule to the surrounding gray matter, as demonstrated by co-infusing trypan blue. Distant tumors were reached using the white matter tracts but tumor penetration was limited. CONCLUSIONS/SIGNIFICANCE CED of adenoviruses in the rat brain and towards infiltrative tumors is feasible when regional anatomical differences are taken into account while SPIO infusion could be considered to validate proper catheter positioning and predict adenoviral distribution.
منابع مشابه
Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging.
Although liposomes have been used as a vehicle for delivery of therapeutic agents in oncology, their efficacy in targeting brain tumors has been limited due to poor penetration through the blood-brain barrier. Because convection-enhanced delivery (CED) of liposomes may improve the therapeutic index for targeting brain tumors, we conducted a three-stage study: stage 1 established the feasibility...
متن کاملReal-time, image-guided, convection-enhanced delivery of interleukin 13 bound to pseudomonas exotoxin.
PURPOSE To determine if the tumor-targeted cytotoxin interleukin 13 bound to Pseudomonas exotoxin (IL13-PE) could be delivered to the brainstem safely at therapeutic doses while monitoring its distribution in real-time using a surrogate magnetic resonance imaging tracer, we used convection-enhanced delivery to perfuse rat and primate brainstems with IL13-PE and gadolinium-bound albumin (Gd-albu...
متن کاملConvection-enhanced drug delivery: increased efficacy and magnetic resonance image monitoring.
Convection-enhanced drug delivery (CED) is a novel approach to directly deliver drugs into brain tissue and brain tumors. It is based on delivering a continuous infusion of drugs via intracranial catheters, enabling convective distribution of high drug concentrations over large volumes of the target tissue while avoiding systemic toxicity. Efficient formation of convection depends on various ph...
متن کاملP81: Psychosocial Stress of Maternal Deprivation Enhanced Volume of Lateral Ventricle in Rat Brain
Brain areas implicated in the stress response include the amygdala, hippocampus and prefrontal cortex. Neonatal stimulation of an animal by handling or by enhanced maternal care induces at adult age a decrease of the hypothalamo-pituitary adrenal (HPA) response to stressors, a decrease of anxiety in a novel environment, and neuroanatomical changes. In this present study we demonstrated that mat...
متن کاملIsolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat
Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes. Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011